622 research outputs found

    QoE-Driven Dynamic Adaptive Video Streaming Strategy With Future Information

    Get PDF

    Distinct responses of planktonic foraminiferal B/Ca to dissolution on seafloor

    Get PDF
    We have measured B/Ca in four core-top planktonic foraminiferal species (Globigerinoides ruber (white), Globigerinoides sacculifer (without final sac-like chamber), Neogloboquadrina dutertrei, and Pulleniatina obliquiloculata) from three depth transects (the Caribbean Sea, the southwestern Indian Ocean, and the Ontong Java Plateau) to evaluate the effect of dissolution on planktonic foraminiferal B/Ca. At each transect, G. ruber (w) and G. sacculifer (w/o sac) show decreasing B/Ca with increasing water depth. This decrease in B/Ca is accompanied with decreases in shell weights, Mg/Ca, and bottom water calcite saturation state. This indicates a postdepositional dissolution effect on B/Ca in these two species. The strong correlation observed between changes in B/Ca and bottom water calcite saturation state offers an approach to correcting for the dissolution bias. By contrast, B/Ca in N. dutertrei and P. obliquiloculata remains unchanged along depth transects, although shell weights and Mg/Ca display significant declines. Overall, our core-top results suggest species-specific dissolution effects on B/Ca in different planktonic foraminiferal species

    Output regulation of nonlinear singularly perturbed systems

    Get PDF
    AbstractIn this paper, the state feedback regulator problem of nonlinear singularly perturbed systems is discussed. It is shown that, under standard assumptions, this problem is solvable if and only if a certain nonlinear partial differential equation is solvable. Once this equation is solvable, a feedback law which solves the problem can easily be constructed. The developed control law is applied to a nonlinear chemical process

    Toward Collinearity-Avoidable Localization for Wireless Sensor Network

    Get PDF
    In accordance with the collinearity problem during computation caused by the beacon nodes used for location estimation which are close to be in the same line or same plane, two solutions are proposed in this paper: the geometric analytical localization algorithm based on positioning units and the localization algorithm based on the multivariate analysis method. The geometric analytical localization algorithm based on positioning units analyzes the topology quality of positioning units used to estimate location and provides quantitative criteria based on that; the localization algorithm based on the multivariate analysis method uses the multivariate analysis method to filter and integrate the beacon nodes coordinate matrixes during the process of location estimation. Both methods can avoid low estimation accuracy and instability caused by multicollinearity

    Structure-Consistent Weakly Supervised Salient Object Detection with Local Saliency Coherence

    Full text link
    Sparse labels have been attracting much attention in recent years. However, the performance gap between weakly supervised and fully supervised salient object detection methods is huge, and most previous weakly supervised works adopt complex training methods with many bells and whistles. In this work, we propose a one-round end-to-end training approach for weakly supervised salient object detection via scribble annotations without pre/post-processing operations or extra supervision data. Since scribble labels fail to offer detailed salient regions, we propose a local coherence loss to propagate the labels to unlabeled regions based on image features and pixel distance, so as to predict integral salient regions with complete object structures. We design a saliency structure consistency loss as self-consistent mechanism to ensure consistent saliency maps are predicted with different scales of the same image as input, which could be viewed as a regularization technique to enhance the model generalization ability. Additionally, we design an aggregation module (AGGM) to better integrate high-level features, low-level features and global context information for the decoder to aggregate various information. Extensive experiments show that our method achieves a new state-of-the-art performance on six benchmarks (e.g. for the ECSSD dataset: F_\beta = 0.8995, E_\xi = 0.9079 and MAE = 0.0489$), with an average gain of 4.60\% for F-measure, 2.05\% for E-measure and 1.88\% for MAE over the previous best method on this task. Source code is available at http://github.com/siyueyu/SCWSSOD.Comment: Accepted by AAAI202

    Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion

    Get PDF
    East Antarctic ice sheet expansion (EAIE) at similar to 13.9 Ma in the middle Miocene represents a major climatic event during the long-term Cenozoic cooling, but ocean circulation and carbon cycle changes during this event remain unclear. Here, we present new fish teeth isotope (epsilon Nd) and benthic foraminiferal B/Ca records from the South China Sea (SCS), newly integrated meridional Pacific benthic foraminiferal delta O-18 and delta C-13 records and simulated results from a biogeochemical box model to explore the responses of deep Pacific Ocean circulation and carbon cycle across EAIE. The epsilon Nd and meridional benthic delta C-13 records reveal a more isolated Pacific Deep Water (PDW) and a sluggish Pacific meridional overturning circulation during the post-EAIE with respect to the pre-EAIE owing to weakened southern-sourced deep water formation. The deep-water [CO32-] and calcium carbonate mass accumulation rate in the SCS display markedly similar increases followed by recoveries to the pre-EAIE level during EAIE, which were probably caused by a shelf-basin shift of CaCO3 deposition and strengthened weathering due to a sea level fall within EAIE. The model results show that the similar to 1 parts per thousand positive delta C-13 excursion during EAIE could be attributed to increased weathering of high-delta C-13 shelf carbonates and a terrestrial carbon reservoir expansion. The drawdown of atmospheric CO2 over the middle Miocene were probably caused by combined effects of increased shelf carbonate weathering, expanded land biosphere carbon storage and a sluggish deep Pacific meridional overturning circulation. (C) 2017 Elsevier B.V. All rights reserved

    Calibration and application of B/Ca, Cd/Ca, and δ^(11)B in Neogloboquadrina pachyderma (sinistral) to constrain CO_2 uptake in the subpolar North Atlantic during the last deglaciation

    Get PDF
    The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO_2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ^(11)B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO_2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)_4−/HCO_3− with a roughly constant partition coefficient (K_D = [B/Ca]_(CaCO_3) / [B(OH)_4−/HCO_3− (seawater)) of 1.48 ± 0.15 × 10^(−3) (2σ), and δ^(11)B in this species is offset below δ^(11)B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant K_D of 1.48 × 10^(−3) to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO_2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO_2 trend but with negative offsets of ~10–50 ppmv during 19–10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ^(11)B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO_2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO_2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO_2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation
    corecore